Compact and Wideband PIFA Design for Wireless Body Area Sensor Networks

Author:

Costanzo SandraORCID,Qureshi Adil MasoudORCID

Abstract

The specific advantage of fractal geometry to realize compact antenna features is exploited in this work for the design of a miniaturized Planar Inverted-F Antenna configuration with a large bandwidth. The conventional quadrilateral radiating element of a Planar Inverted-F Antenna is replaced by a Minkowski pre-fractal-based shape, thus increasing the resonant wavelength without affecting the overall antenna dimensions. Consequently, with the new design, a physically smaller antenna can achieve the same resonant frequency of a larger conventional configuration. Measured as well as simulated reflection coefficient and radiation patterns are presented to validate the assumptions. The impedance bandwidth of the antenna (2.19 to 2.52 GHz) covers the ISM band with a boresight gain of 1.5–2 dB over the entire band. Furthermore, to demonstrate the miniaturization effect, a successful comparison is provided with an identically sized, conventional square Planar Inverted-F Antenna design. The proposed antenna design can be usefully adopted for power-efficient communications in the framework of Wireless Body Area Sensor Networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Channel Modeling of Electromagnetic Waves in Biological Tissues for Wireless Body Communication;Electronics;2023-03-07

2. Multiband Option and Size Reduction of PIFA antenna by using Genetic Algorithm and Gridded Structure;2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3