Design and Implementation Procedure for an Advanced Driver Assistance System Based on an Open Source AUTOSAR

Author:

Park ,Choi

Abstract

In this paper, we present the detailed design and implementation procedures for an advanced driver assistance system (ADAS) based on an open source automotive open system architecture (AUTOSAR). Due to the increasing software complexity of ADAS, portability, component interoperability, and maintenance are becoming essential development factors. AUTOSAR satisfies these demands by defining system architecture standards. Although commercial distributions of AUTOSAR are well established, accessibility is a huge concern as they come with very expensive licensing fees. Open source AUTOSAR addresses this issue and can also minimize the overall cost of development. However, the development procedure has not been well established and could be difficult for engineers. The contribution of this paper is divided into two main parts: First, we provide the complete details on developing a collision warning system using an open source AUTOSAR. This includes the simplified basic concepts of AUTOSAR, which we have organized for easier understanding. Also, we present an improvement of the existing AUTOSAR development methodology focusing on defining the underlying tools at each development stage with clarity. Second, as the performance of open source software has not been proven and requires benchmarking to ensure the stability of the system, we propose various evaluation methods measuring the real-time performance of tasks and the overall latency of the communication stack. These performance metrics are relevant to confirm whether the entire system has deterministic behavior and responsiveness. The evaluation results can help developers to improve the overall safety of the vehicular system. Experiments are conducted on an AUTOSAR evaluation kit integrated with our self-developed collision warning system. The procedures and evaluation methods are applicable not only on detecting obstacles but other variants of ADAS and are very useful in integrating open source AUTOSAR to various vehicular applications.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AUTOSAR in the Smart Cities Era: Current Developments and Research Trends;2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive);2023-06-28

2. Model Based Design in Automotive Open System Architecture;2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS);2023-05-17

3. A Method for Managing Software Assets in the Automotive Industry (Focusing on the Case of Hyundai Motor Company and Parts Makers);Applied Sciences;2023-03-24

4. TDCA: improved optimization algorithm with degree distribution and communication traffic for the deployment of software components based on AUTOSAR architecture;Soft Computing;2023-03-17

5. A Computer Vision Approach to Predict Distance in an Autonomous Vehicle Environment;Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3