DALI LED Driver Control System for Lighting Operations Based on Raspberry Pi and Kernel Modules

Author:

Adam

Abstract

Light emitting diodes (LEDs) as an efficient low-consumption lighting technology are being used increasingly in many applications. The move to LED lighting is also changing the way the lighting control systems are designed. Currently, most electronic ballasts and other digital lighting devices implement the Digital Addressable Lighting Interface (DALI) standard. This paper presents a low-cost, low-power effective DALI LED driver controller, based on open-source Raspberry Pi3 microcontroller prototyping platform. The control software is developed as a Linux kernel module under UBUNTU 18.04.2 LTS patched with PREEMPT_RT (Preemptive Real-time) for real-time processing. This dynamically loaded kernel module performs all the processing, communication and control operations of the Raspberry Pi3-based DALI controller with the DALI LED driver and LED luminaire. Software applications written in C and Python were developed for performance testing purposes. The experimental results showed that the proposed system could efficiently and effectively manage DALI LED drivers and perform lighting operations (e.g. dimming). The system can be used for a variety of purposes from personal lighting control needs and experimental research in control of electronic ballasts and other control gears, devices and sensors, to advanced requirements in professional buildings, including energy management, lighting maintenance and usage.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of an LED Strip Controller Based on a PWM Driver and a PIC Series Microcontroller;Applied Sciences;2024-05-12

2. Design and Implementation of a Real-Time Street Light Dimming System Based on a Hybrid Control Architecture;International Journal of Distributed Sensor Networks;2023-11-17

3. Developing Device Driver for Raspberry Pi;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23

4. Unsupervised Clustering Pipeline to Obtain Diversified Light Spectra for Subject Studies and Correlation Analyses;Applied Sciences;2021-09-28

5. A new internet of things enabled trust distributed demand side management system;Sustainable Energy Technologies and Assessments;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3