Abstract
Bone cancer is rare in adults, the most affected persons by this disease are young people and children. The common treatments for bone cancer are surgery, chemotherapy, and targeted therapies; however, all of them have side-effects that decrease the patient’s quality of life. Thermotherapy is one of the most promising treatments for bone cancer; its main goal is to increase the tumor temperature to kill cancerous cells. Although some micro-coaxial antennas have been used to treat bone tumors, most of them are designed to treat soft tissue. Therefore, the purpose of this work is to analyze the thermal behavior of four micro-coaxial antennas specifically designed to generate thermal ablation in bone tissue to treat bone tumors, at 2.45 GHz. The proposed antennas were the metal-tip monopole (MTM), the choked metal-tip monopole (CMTM), the double slot (DS) and the choked double slot (CDS). The design and optimization of the antennas by using the Finite Element Method (FEM) allow to predict the optimal antenna dimensions and their performance when they are in contact with the affected biological tissues (bone, muscle, and fat). In the FEM model, a maximum power transmission was selected as the main parameter to choose the optimum antenna design, i.e., a Standing Wave Ratio (SWR) value around 1.2–1.5. The four optimized antennas were constructed and experimentally evaluated. The evaluation was carried out in multilayer phantoms (fat, muscle, cortical, and cancellous bone) and ex vivo porcine tissue at different insertion depths of the antennas. To fully evaluate the antennas performance, the standing wave ratio (SWR), power loss, temperature profiles, and thermal distributions were analyzed. In the experimentation, the four antennas were able to reach ablation temperatures (>60 °C) and the highest reached SWR was 1.7; the MTM (power loss around 16%) and the CDS (power loss around 6.4%) antennas presented the lowest SWR values depending on the antenna insertion depth, either in multilayer tissue phantom or in ex vivo tissue. These proposed antennas allow to obtain ablation temperatures with an input power of 5 W after 5 min of treatment; these values are lower than the ones reported in the literature.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference55 articles.
1. Metastatic Carcinoma of the Long Bones;Riccio;Acad. Fam. Physicians,2007
2. Facts & Figures 2021,2021
3. Bone Tumor: Types, Causes and Symptomshttps://www.healthline.com/health/bone-tumors#benign-tumors
4. Thermal ablation: An alternative to bone cancer;Trujillo-Romero;Investig. En Discapac.,2018
5. Antennas Design for Microwave Ablation in Bone Tissue: Simulation and Experimental Validation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献