Self-Adaptive Run-Time Variable Floating-Point Precision for Iterative Algorithms: A Joint HW/SW Approach

Author:

Ait Said NoureddineORCID,Benabdenbi MounirORCID,Morin-Allory Katell

Abstract

Using standard Floating-Point (FP) formats for computation leads to significant hardware overhead since these formats are over-designed for error-resilient workloads such as iterative algorithms. Hence, hardware FP Unit (FPU) architectures need run-time variable precision capabilities. In this work, we propose a new method and an FPU architecture that enable designers to dynamically tune FP computations’ precision automatically at run-time called Variable Precision in Time (VPT), leading to significant power consumption, execution time, and energy savings. In spite of its circuit area overhead, the proposed approach simplifies the integration of variable precision in existing software workloads at any level of the software stack (OS, RTOS, or application-level): it only requires lightweight software support and solely relies on traditional assembly instructions, without the need for a specialized compiler or custom instructions. We apply the technique on the Jacobi and the Gauss–Seidel iterative methods taking full advantage of the suggested FPU. For each algorithm, two modified versions are proposed: a conservative version and a relaxed one. Both algorithms are analyzed and compared statistically to understand the effects of VPT on iterative applications. The implementations demonstrate up to 70.67% power consumption saving, up to 59.80% execution time saving, and up to 88.20% total energy saving w.r.t the reference double precision implementation, and with no accuracy loss.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3