EDHA: Event-Driven High Accurate Simulator for Spike Neural Networks

Author:

Mo LingfeiORCID,Chen Xinao,Wang Gang

Abstract

In recent years, spiking neural networks (SNNs) have attracted increasingly more researchers to study by virtue of its bio-interpretability and low-power computing. The SNN simulator is an essential tool to accomplish image classification, recognition, speech recognition, and other tasks using SNN. However, most of the existing simulators for spike neural networks are clock-driven, which has two main problems. First, the calculation result is affected by time slice, which obviously shows that when the calculation accuracy is low, the calculation speed is fast, but when the calculation accuracy is high, the calculation speed is unacceptable. The other is the failure of lateral inhibition, which severely affects SNN learning. In order to solve these problems, an event-driven high accurate simulator named EDHA (Event-Driven High Accuracy) for spike neural networks is proposed in this paper. EDHA takes full advantage of the event-driven characteristics of SNN and only calculates when a spike is generated, which is independent of the time slice. Compared with previous SNN simulators, EDHA is completely event-driven, which reduces a large amount of calculations and achieves higher computational accuracy. The calculation speed of EDHA in the MNIST classification task is more than 10 times faster than that of mainstream clock-driven simulators. By optimizing the spike encoding method, the former can even achieve more than 100 times faster than the latter. Due to the cross-platform characteristics of Java, EDHA can run on x86, amd64, ARM, and other platforms that support Java.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3