IoT-Oriented Design of an Associative Memory Based on Impulsive Hopfield Neural Network with Rate Coding of LIF Oscillators

Author:

Boriskov PetrORCID

Abstract

The smart devices in Internet of Things (IoT) need more effective data storage opportunities, as well as support for Artificial Intelligence (AI) methods such as neural networks (NNs). This study presents a design of new associative memory in the form of impulsive Hopfield network based on leaky integrated-and-fire (LIF) RC oscillators with frequency control and hybrid analog–digital coding. Two variants of the network schemes have been developed, where spiking frequencies of oscillators are controlled either by supply currents or by variable resistances. The principle of operation of impulsive networks based on these schemes is presented and the recognition dynamics using simple two-dimensional images in gray gradation as an example is analyzed. A fast digital recognition method is proposed that uses the thresholds of zero crossing of output voltages of neurons. The time scale of this method is compared with the execution time of some network algorithms on IoT devices for moderate data amounts. The proposed Hopfield algorithm uses rate coding to expand the capabilities of neuromorphic engineering, including the design of new hardware circuits of IoT.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3