Improved Indirect Model Predictive Control for Enhancing Dynamic Performance of Modular Multilevel Converter

Author:

Nguyen Minh HoangORCID,Kwak SangshinORCID

Abstract

Model predictive control has become a tremendously popular control method for power converters, notably a modular multilevel converter, owing to the ability to control various objectives at once with a particular cost function and prominent dynamic performance. However, the high number of submodules in cascaded control means that the model predictive control for the modular multilevel converter suffers from a computational burden. Several approaches focused on reducing the computational burden based on limiting the number of possible switching states (possible choices) to be evaluated at each sampling instant. The dynamic performance of the modular multilevel converter is degraded in a transient state, despite the reduced computational burden. This paper presents an improved indirect model predictive control method to reduce the computational burden and enhance the dynamic performance. The proposed approach considers the steady-state and transient state individually and applies a different range of choices for each specific case. The range of choices during the steady-state is limited in order to reduce the computational burden without deteriorating the output quality, whereas the number of choices will be increased during the transient state to guarantee dynamic performance. The results that were obtained by implementing an experiment on a laboratory setup of a single-phase modular multilevel converter are presented in order to verify the proposed approach’s effectiveness. From the experimental setup, the computational time in the proposed approach was reduced by about 75% when compared with the conventional indirect model predictive control, whereas keeping fast dynamic performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3