Author:
Kawauchi Hayato,Tanzawa Toru
Abstract
This paper describes a clocked AC-DC charge pump to enable full integration of power converters into a sensor or radio frequency (RF) chip even with low open circuit voltage magnetostrictive vibration energy transducer operating at a low resonant frequency of 10 Hz to 1 kHz. The frequency of the clock to drive an AC-DC charge pump was up-converted with an on-chip oscillator to increase output power of the charge pump without significantly increasing the circuit area. A model of the system including the charge pump and vibration energy transducer is shown. It was validated by HSPICE simulation and measured, resulting in a prototype chip with an area of 0.11 mm2 fabricated in a 65 nm 1 V CMOS process. The fabricated charge pump was also measured together with a magnetostrictive transducer. The charge pump converted the power from the transducer to an output power of 4.2 μW at an output voltage of 2.0 V. The output power varied below 3% over a wide input frequency of 10 Hz to 100 kHz, which suggests that universal design of the clocked AC-DC charge pump can be used for transducers with different resonant frequencies. In a low-input voltage region below 0.8 V, the proposed circuit has higher output power compared with the conventional circuits.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献