Research of HRV as a Measure of Mental Workload in Human and Dual-Arm Robot Interaction

Author:

Shao ShiliangORCID,Wang Ting,Wang YongliangORCID,Su Yun,Song ChunheORCID,Yao Chen

Abstract

Robots instead of humans work in unstructured environments, expanding the scope of human work. The interactions between humans and robots are indirect through operating terminals. The mental workloads of human increase with the lack of direct perception to the real scenes. Thus, mental workload assessment is important, which could effectively avoid serious accidents caused by mental overloading. In this paper, the operating object is a dual-arm robot. The classification of operator’s mental workload is studied by using the heart rate variability (HRV) signal. First, two kinds of electrocardiogram (ECG) signals are collected from six subjects who performed tasks or maintained a relaxed state. Then, HRV data is obtained from ECG signals and 20 kinds of HRV features are extracted. Last, six different classifications are used for mental workload classification. Using each subject’s HRV signal to train the model, the subject’s mental workload is classified. Average classification accuracy of 98.77% is obtained using the K-Nearest Neighbor (KNN) method. By using the HRV signal of five subjects for training and that of one subject for testing with the Gentle Boost (GB) method, the highest average classification accuracy (80.56%) is obtained. This study has implications for the analysis of HRV signals characteristic of mental workload in different subjects, which could improve operators’ well-being and safety in the human-robot interaction process.

Funder

LiaoNing Revitalization Talents Program

National key research and development program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Using a Variable-Friction Robot Hand to Determine Proprioceptive Features for Object Classification During Within-Hand-Manipulation

2. A target tracking method of UAV based on cooperative target;Su;Robot,2019

3. Cooperative Manipulation for a Mobile Dual-Arm Robot Using Sequences of Dynamic Movement Primitives

4. Cooperative path planning of dual-arm robot based on attractive force self-adaptive step size RRT;Li;Robot,2020

5. A survey of workload assessment algorithms

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3