Abstract
Infrared and visible image fusion technologies make full use of different image features obtained by different sensors, retain complementary information of the source images during the fusion process, and use redundant information to improve the credibility of the fusion image. In recent years, many researchers have used deep learning methods (DL) to explore the field of image fusion and found that applying DL has improved the time-consuming efficiency of the model and the fusion effect. However, DL includes many branches, and there is currently no detailed investigation of deep learning methods in image fusion. In this work, this survey reports on the development of image fusion algorithms based on deep learning in recent years. Specifically, this paper first conducts a detailed investigation on the fusion method of infrared and visible images based on deep learning, compares the existing fusion algorithms qualitatively and quantitatively with the existing fusion quality indicators, and discusses various fusions. The main contribution, advantages, and disadvantages of the algorithm. Finally, the research status of infrared and visible image fusion is summarized, and future work has prospected. This research can help us realize many image fusion methods in recent years and lay the foundation for future research work.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献