Multilayer Detection of Network Steganography

Author:

Smolarczyk Milosz,Szczypiorski KrzysztofORCID,Pawluk Jakub

Abstract

This paper presents a new method for steganography detection in network protocols. The method is based on a multilayer approach for the selective analysis of derived and aggregated metrics utilizing machine learning algorithms. The main objective is to provide steganalysis capability for networks with large numbers of devices and connections. We discuss considerations for performance analysis and present results. We also describe a means of applying our method for multilayer detection of a popular RSTEG (Retransmission Steganography) technique.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference25 articles.

1. Future of Data Hiding: A Walk through Conventional to Network Steganography, in Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health;Tanwar,2020

2. Efficient Non-Linear Covert Channel Detection in TCP Data Streams

3. Trends Toward Real-Time Network Data Steganography

4. Retransmission steganography and its detection

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Based Detection of Hidden Data in Network Packets;Smart Innovation, Systems and Technologies;2024

2. A Hybrid Personal Cyber Threat Intelligence Sharing Protocol Using Steganography and Secret Sharing;Springer Proceedings in Complexity;2024

3. Using Machine Learning to Detect Hidden Information Through Steganographic Techniques in the TCP/IP Network Protocols;Lecture Notes in Networks and Systems;2024

4. Steganography and its Feasible Approaches for Computer Network Security;2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI);2023-11-23

5. A Walk-through towards Network Steganography Techniques;Informatics and Automation;2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3