Abstract
Short or moderate-length non-binary low-density parity-check (NB-LDPC) codes have the potential applications in future low latency and high-reliability communication thanks to the strong error correction capability and parallel decoding. Because of the existence of the error floor, the NB-LDPC codes usually cannot satisfy very low bit error rate (BER) requirements. In this paper, a low-complexity method is proposed for optimizing the minimum distance of the NB-LDPC code in a progressive chord edge growth manner. Specifically, each chord edge connecting two non-adjacent vertices is added to the Hamiltonian cycle one-by-one. For each newly added chord edge, the configuration of non-zero entries corresponding to the chord edge is determined according to the so-called full rank condition (FRC) of all cycles that are related to the chord edge in the obtained subgraph. With minor modifications to the designed method, it can be used to construct the NB-LDPC codes with an efficient encoding structure. The analysis results show that the method for designing NB-LDPC codes while using progressive chord edge growth has lower complexity than traditional methods. The simulation results show that the proposed method can effectively improve the performance of the NB-LDPC code in the high signal-to-noise ratio (SNR) region. While using the proposed scheme, an NB-LDPC code with a quite low BER can be constructed with extremely low complexity.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering