An Approach of Feed-Forward Neural Network Throughput-Optimized Implementation in FPGA

Author:

Novickis RihardsORCID,Justs Daniels JānisORCID,Ozols KasparsORCID,Greitāns ModrisORCID

Abstract

Artificial Neural Networks (ANNs) have become an accepted approach for a wide range of challenges. Meanwhile, the advancement of chip manufacturing processes is approaching saturation which calls for new computing solutions. This work presents a novel approach of an FPGA-based accelerator development for fully connected feed-forward neural networks (FFNNs). A specialized tool was developed to facilitate different implementations, which splits FFNN into elementary layers, allocates computational resources and generates high-level C++ description for high-level synthesis (HLS) tools. Various topologies are implemented and benchmarked, and a comparison with related work is provided. The proposed methodology is applied for the implementation of high-throughput virtual sensor.

Funder

Izglītības un zinātnes ministrija

Electronic Components and Systems for European Leadership

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference39 articles.

1. ImageNet classification with deep convolutional neural networks

2. A survey of deep neural network architectures and their applications

3. Spiking Neural Networks, the Next Generation of Machine Learninghttps://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b

4. A Structure-Enriched Neural Network for network embedding

5. Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3