Abstract
Currently, there are no formalized methods for tuning non-integer order controllers. This is due to the fact that implementing these systems requires using an approximation of the non-integer order terms. The Oustaloup approximation method of the sα fractional derivative is intuitive and widely adopted in the design of fractional-order PIλD controllers. It requires special considerations for real-time implementations as it is prone to numerical instability. In this paper, for design and tuning of fractional regulators, we propose two methods.The first method relies on Nyquist stability criterion and stability margins. We base the second on parametric optimization via Simulated Annealing of multiple performance indicators. We illustrate our methods with a case study of the PIλD controller for the Magnetic Levitation System. We illustrate our methods’ efficiency with both simulations and experimental verification in both nominal and disturbed operation.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献