Rain Attenuations Based on Drop Size Distribution (DSD) Model and Empirical Model at Low THz Frequencies

Author:

Kim Yongho1,Kim Jongho2ORCID,Oh Jinhyung2,Yoon Youngkeun2,Park Sangwook3,Lee Jaegon1ORCID

Affiliation:

1. Department of Electronic and Software Engineering, Kyungnam University, Changwon 51767, Republic of Korea

2. Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea

3. Department of Electronic Engineering, Soonchunhyang University, Asan 31538, Republic of Korea

Abstract

Rain attenuation based on the drop size distribution (DSD) with different rainfall rates (R) at low THz frequencies is investigated in this paper. The rain attenuation is calculated using the DSD measured for one year and the extinction cross-section (ECS) by the Mie scattering theory. Moreover, the obtained specific rain attenuation is verified by the empirical model using the measurement system consisting of a transmitter, a receiver, and weather measurement units. We measured the received power against the uniform transmitted power at 240, 270, and 300 GHz on the rooftop of the National Radio Research Agency (RRA) in Korea during the same period as the DSD measurement period. After curve fitting by regression analysis, we compared both rain attenuations obtained in two methods with the recommendation International Telecommunication Union Radiocommunication Sector (ITU-R) P.838-3. The root mean square errors (RMSEs) of the DSD model are 2.8977, 2.8646, and 2.8331 at 240, 270, and 300 GHz, respectively. The calculated result using the Mie scattering and the measured DSD methods shows the best fit to the data of the ITU-R recommendation for a rainfall rate of up to 5 mm/h. On the other hand, the empirical results using the T/Rx antenna system are slightly higher compared to the data of the ITU-R recommendation. As the rainfall rate increases, the difference between our results and ITU-R recommendation increases. This study will be useful for predicting rain attenuation for terrestrial wireless links operating at low THz frequencies.

Funder

Institute for Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3