Design and Development of a CCSDS 131.2-B Software-Defined Radio Receiver Based on Graphics Processing Unit Accelerators

Author:

Ciardi Roberto12ORCID,Giuffrida Gianluca2ORCID,Bertolucci Matteo2ORCID,Fanucci Luca2ORCID

Affiliation:

1. Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

2. Space Division, IngeniArs S.r.l., 56121 Pisa, Italy

Abstract

In recent years, the number of Earth Observation missions has been exponentially increasing. Satellites dedicated to these missions usually embark with payloads that produce large amount of data and that need to be transmitted towards ground stations, in time-limited windows. Moreover, the noisy nature of the link between satellites and ground stations makes it hard to achieve reliable communication. To address these problems, a standard for a flexible advanced coding and modulation scheme for high-rate telemetry applications has been defined by the Consultative Committee for Space Data Systems (CCSDS). The defined standard, referred to as CCSDS 131.2-B, makes use of Serially Concatenated Convolutional Codes (SCCC) based on 27 ModCods to optimize transmission quality. A limiting factor in the adoption of this standard is represented by the complexity and the cost of the hardware required for developing high-performance receivers. In the last decade, the performance of software has grown due to the advancement of general-purpose processing hardware, leading to the development of many high-performance software systems even in the telecommunication sector. These are commonly referred to as Software-Defined Radio (SDR), indicating a radio communication system in which components that are usually implemented in hardware, by means of FPGAs or ASICs, are instead implemented in software, offering many advantages such as flexibility, modularity, extensibility, cheaper maintenance, and cost saving. This paper proposes the development of an SDR based on NVIDIA Graphics Processing Units (GPU) for implementing the receiver end of the CCSDS 131.2-B standard. At first, a brief description of the CCSDS 131.2-B standard is given, focusing on the architecture of the transmitter and receiver sides. Then, the receiver architecture is shown, giving an overview of its functional blocks and of the implementation choices made to optimize the processing of the signal, especially for the SCCC Decoder. Finally, the performance of the system is analyzed in terms of data-rate and error correction and compared with other SW systems to highlight the achieved improvements. The presented system has been demonstrated to be a perfect solution for CCSDS 131.2-B-compliant device testing and for its use in science missions, providing a valid low-cost alternative with respect to the state-of-the-art HW receivers.

Publisher

MDPI AG

Reference38 articles.

1. The New Space Economy and New Business Model;Parrella;New Space,2022

2. The present and future of the space sector: A business ecosystem approach;Orlova;Space Policy,2020

3. (2023, November 25). SpaceX Website. Available online: https://www.spacex.com.

4. (2023, November 25). Blue Origin Website. Available online: https://www.blueorigin.com.

5. (2023, November 25). Virgin Galactic Website. Available online: https://www.virgingalactic.com.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3