A High-Accuracy, Scalable and Affordable Indoor Positioning System Using Visible Light Positioning for Automated Guided Vehicles

Author:

Boixader Aleix1,Labella Carlos1,Catalan Marisa1,Paradells Josep12

Affiliation:

1. IoT Research Group, Fundació i2CAT, 08034 Barcelona, Spain

2. Barcelona School of Telecommunications Engineering, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Abstract

Indoor Positioning Systems (IPSs) have multiple applications. For example, they can be used to guide people, to locate items in a warehouse and to support the navigation of Automated Guided Vehicles (AGV). Currently most AGVs use local pre-defined navigation systems, but they lack a global localisation system. Integrating both systems is uncommon due to the inherent challenge in balancing accuracy with coverage. Visible Light Position (VLP) offers accurate and fast localisation, but it encounters scalability limitations. To overcome this, this paper presents a novel Image Sensor-based VLP (IS-VLP) identification method that harnesses existing Light Emitting Diode (LED) lighting infrastructure to substitute both navigation and localisation systems effectively in the whole area. We developed an IPS that achieves six-axis positioning at 90 Hz refresh rate using OpenCV’s solvePnP algorithm and embedded computing. This IPS has been validated in a laboratory environment and successfully deployed in a real factory to position an operative AGV. The system has resulted in accuracies better than 12 cm for 95% of the measurements. This work advances towards positioning VLP as an appealing choice for IPS in industrial environments, offering an inexpensive, scalable, accurate and robust solution.

Funder

European Union's Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3