A Field Programmable Gate Array Placement Methodology for Netlist-Level Circuits with GPU Acceleration

Author:

Liu Meng1,Wang Yunfei1,Li Shuai1

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100025, China

Abstract

Field Programmable Gate Arrays (FPGAs), renowned for their reconfigurable nature, offer unmatched flexibility and cost-effectiveness in engineering experimentation. They stand as the quintessential platform for hardware acceleration and prototype validation. With the increasing ubiquity of FPGA chips and the escalating scale of system designs, the significance of their accompanying Electronic Design Automation (EDA) tools has never been more pronounced. The placement process, serving as the linchpin in FPGA EDA, directly influences FPGA development and operational efficiency. This paper introduces an FPGA placement methodology hinging on the Verilog-to-Routing (VTR) framework. We introduce a novel packing approach grounded in the weighted Edmonds’ Blossom algorithm, ensuring that the CLB generation strategy aligns more closely with load-balanced distribution. Furthermore, we enhanced the electric field-driven resolver placement process for CLB locations and leverage GPU-accelerated design. Experimental results demonstrate substantial improvements over the traditional VTR algorithm, with an average optimization of 28.42% in the packing process runtime, an average acceleration ratio of 2.85 times in the placement phase, and a 39.97% reduction in total packing and placement runtime consumption.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3