MFM: A Multiple-Features Model for Leisure Event Recommendation in Geotagged Social Networks

Author:

Wu Yazhao1,Peng Xia234,Niu Yueyan5,Gui Zhiming1ORCID

Affiliation:

1. Faculty of Information, Beijing University of Technology, Beijing 100124, China

2. Tourism College, Beijing Union University, Beijing 100101, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4. Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100045, China

5. College of Applied Arts and Science, Beijing Union University, Beijing 100191, China

Abstract

Event-based social networks (EBSNs) are rich in information about users and leisure events. The willingness of users to participate in leisure events is influenced by many factors such as event time, location, content, organizer, and social relationship factors of users. Event recommendation systems in EBSNs can help leisure event organizers to accurately find users who want to participate in events. However, to address the existing cold-start problems and improve the accuracy of event recommendations, we propose a multiple-feature-based leisure event recommendation model (MFM). We introduce the user’s social contacts into the user preference features and construct a user feature space by integrating the features of the user preferences for events and organizers and preferences of the user’s closest friends. Moreover, considering the behavioral differences between active and inactive users, we extracted the respective features and trained the feature weight models. Finally, the experimental results showed that in comparison with the baseline models, the precision of the MFM is higher by at least 7.9%.

Funder

State Key Laboratory of Resources and Environmental Information System

Beijing Key Laboratory of Urban Spatial Information Engineering

Academic Research Projects of Beijing Union University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3