ProvGRP: A Context-Aware Provenance Graph Reduction and Partition Approach for Facilitating Attack Investigation

Author:

Li Jiawei1ORCID,Zhang Ru1,Liu Jianyi1

Affiliation:

1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Attack investigation is a crucial technique in proactively defending against sophisticated attacks. Its purpose is to identify attack entry points and previously unknown attack traces through comprehensive analysis of audit data. However, a major challenge arises from the vast and redundant nature of audit logs, making attack investigation difficult and prohibitively expensive. To address this challenge, various technologies have been proposed to reduce audit data, facilitating efficient analysis. However, most of these techniques rely on defined templates without considering the rich context information of events. Moreover, these methods fail to remove false dependencies caused by the coarse-grained nature of logs. To address these limitations, this paper proposes a context-aware provenance graph reduction and partition approach for facilitating attack investigation named ProvGRP. Specifically, three features are proposed to determine whether system events are the same behavior from multiple dimensions. Based on the insight that information paths belonging to the same high-level behavior share similar information flow patterns, ProvGRP generates information paths containing context, and identifies and merges paths that share similar flow patterns. Experimental results show that ProvGRP can efficiently reduce provenance graphs with minimal loss of crucial information, thereby facilitating attack investigation in terms of runtime and results.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3