ModSoft-HP: Fuzzy Microservices Placement in Kubernetes

Author:

Petrakis Euripides G. M.1ORCID,Skevakis Vasileios1ORCID,Eliades Panayiotis1,Aznavouridis Alkiviadis1,Tsakos Konstantinos1

Affiliation:

1. School of Electrical and Computer Engineering, Technical University of Crete (TUC), 73100 Chania, Crete, Greece

Abstract

The growing popularity of microservices architectures generated the need for tools that orchestrate their deployment in containerized infrastructures, such as Kubernetes. Microservices running in separate containers are packed in pods and placed in virtual machines (nodes). For applications with multiple communicating microservices, the decision of which services should be placed in the same node has a certain impact on both the running time and the operation cost of an application. The default Kubernetes scheduler is not optimal in that case. In this work, the service placement problem is treated as graph clustering. An application is modeled using a graph with nodes and edges representing communicating microservices. Graph clustering partitions the graph into clusters of microservices with high-affinity rates. Then, the microservices of each cluster are placed in the same Kubernetes node. A class of methods resorts to hard clustering (i.e., each microservice is placed in exactly one node). We advocate that graph clustering should be fuzzy to allow high-utilized microservices to run in more than one instance (i.e., pods) in different nodes. ModSoft-HP Scheduler is a custom Kubernetes scheduler that takes scheduling decisions based on the results of the ModSoft fuzzy clustering method followed by heuristic packing (HP). For proof of concept, the workloads of two applications (i.e., an e-commerce application, eShop, and an IoT architecture) are given as input to the default Kubernetes Scheduler, the Bisecting K-means, and the Heuristic First Fit (hard) clustering schedulers and to the ModSoft-HP fuzzy clustering method. The experimental results demonstrate that ModSoft-HP can achieve up to 90% reduction of egress traffic, up to 20% savings in response time, and up to 25% less hosting costs compared to service placement with the default Kubernetes Scheduler in the Google Kubernetes Engine.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3