Improving Electric Vehicle Structural-Borne Noise Based on Convolutional Neural Network-Support Vector Regression

Author:

Jia Xiaoli1,Zhou Lin2,Huang Haibo3,Pang Jian1,Yang Liang1

Affiliation:

1. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing Chang’an Automobile Co., Ltd., Chongqing 401133, China

2. Chongqing Metropolitan College of Science and Technology, Chongqing 401320, China

3. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

In order to enhance the predictive accuracy and control capabilities pertaining to low- and medium-frequency road noise in automotive contexts, this study introduces a methodology for Structural-borne Road Noise (SRN) prediction and optimization. This approach relies on a multi-level target decomposition and a hybrid model combining Convolutional Neural Network (CNN) and Support Vector Regression (SVR). Initially, a multi-level target analysis method is proposed, grounded in the hierarchical decomposition of vehicle road noise along the chassis parts, delineated layer by layer, in accordance with the vibration transmission path. Subsequently, the CNN–SVR hybrid model, predicated on the multi-level target framework, is proposed. Notably, the hybrid model exhibits a superior predictive accuracy exceeding 0.97, surpassing both traditional CNN and SVR models. Finally, the method and model are deployed for sensitivity analysis of chassis parameters in relation to road noise, as well as for the prediction and optimization analysis of SRN in vehicles. The outcomes underscore the high sensitivity of parameters such as the dynamic stiffness of the rear axle bushing and the large front swing arm bushing influencing SRN. The optimization results, facilitated by the CNN–SVR hybrid model, align closely with the measured outcomes, displaying a negligible relative error of 0.82%. Furthermore, the measured results indicate a noteworthy enhancement of 4.07% in the driver’s right-ear Sound Pressure Level (SPL) following the proposed improvements compared to the original state.

Funder

National Key Research and Development Program of China

open fund of State Key Laboratory of Vehicle NVH and Safety Technology

The independent project of State Key Laboratory of Vehicle NVH and Safety Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3