Predicting Software Defects in Hybrid MPI and OpenMP Parallel Programs Using Machine Learning

Author:

Althiban Amani S.1,Alharbi Hajar M.1,Al Khuzayem Lama A.1,Eassa Fathy Elbouraey1

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

High-performance computing (HPC) and its supercomputers are essential for solving the most difficult issues in many scientific computing domains. The proliferation of computational resources utilized by HPC systems has resulted in an increase in the associated error rates. As such, modern HPC systems promote a hybrid programming style that integrates the message-passing interface (MPI) and open multi-processing (OpenMP). However, this integration often leads to complex defects, such as deadlocks and race conditions, that are challenging to detect and resolve. This paper presents a novel approach: using machine learning algorithms to predict defects in C++-based systems by employing hybrid MPI and OpenMP models. We focus on employing a balanced dataset to enhance prediction accuracy and reliability. Our study highlights the effectiveness of the support vector machine (SVM) classifier, enhanced with term frequency (TF) and recursive feature elimination (RFE) techniques, which demonstrates superior accuracy and performance in defect prediction when compared to other classifiers. This research contributes significantly to the field by providing a robust method for early defect detection in hybrid programming environments, thereby reducing development time, costs and improving the overall reliability of HPC systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3