A Method for Visualization of Images by Photon-Counting Imaging Only Object Locations under Photon-Starved Conditions

Author:

Ha Jin-Ung1ORCID,Kim Hyun-Woo1ORCID,Cho Myungjin2ORCID,Lee Min-Chul1ORCID

Affiliation:

1. Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Fukuoka, Japan

2. School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, IITC, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea

Abstract

Recently, many researchers have been studying the visualization of images and the recognition of objects by estimating photons under photon-starved conditions. Conventional photon-counting imaging techniques estimate photons by way of a statistical method using Poisson distribution in all image areas. However, Poisson distribution is temporally and spatially independent, and the reconstructed image has a random noise in the background. Random noise in the background may degrade the quality of the image and make it difficult to accurately recognize objects. Therefore, in this paper, we apply photon-counting imaging technology only to the area where the object is located to eliminate the noise in the background. As a result, it can be seen that the image quality using the proposed method is better than that of the conventional method and the object recognition rate is also higher. Optical experiments were conducted to prove the denoising performance of the proposed method. In addition, we used the structure similarity index measure (SSIM) as a performance metric. To check the recognition rate of the object, we applied the YOLOv5 model. Finally, the proposed method is expected to accelerate the development of astrophotography and medical imaging technologies.

Funder

National Research Foundation of Korea

Kyushu Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. N Observation Photon Counting Imaging With Preprocessing;2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE);2024-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3