Experimental Study on No-Load Loss Characteristics of an Alternating Current Excitation Motor

Author:

Xu Weihui1,Ruan Yushuai2,Wang Weishu1,He Xiaoke1

Affiliation:

1. College of School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450018, China

2. College of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450018, China

Abstract

An AC excitation power supply will produce a series of harmonic currents in motors compared to the conventional power supply, increase the time harmonic component, and then generate a harmonic magnetic field; harmonics will cause motor vibrations and noise in the motor and will produce a corresponding additional loss, increasing the motor temperature rise; these key technical problems need to be solved in domestic pumped storage AC excitation motor engineering applications. Herein, the no-load loss characteristic test of a 3 MW alternating current excited motor was mainly carried out using a test prototype of the 3 MW alternating current excitation motor. Further, with the aid of the finite element method, the numerical study of the no-load loss characteristics of a 3 MW alternating current excited motor was performed. The relationship between the key factors such as the no-load characteristics, no-load loss characteristics, and constant loss and voltage per unit value is analyzed, and the variation law of the no-load core loss of motors under different loads is explored. The results demonstrate that, under no-load conditions, when the applied voltage was less than the rated voltage, the voltage was proportional to the current. When the applied voltage was more significant than the rated voltage, the current increased as the voltage increased, but the relationship between the two was no longer proportional. The constant loss of the motor maintained a linear relationship with the square of the unit value of the voltage scale. When the square of the unit value of the voltage scale was zero, the loss was equivalent to the wind friction loss under no load. The core loss increased with the increase in load, and the greater the load, the faster the increase rate of the motor iron loss. The comparison deviation between the test and simulation results was less than 10%. The simulation and experimental results verified the effectiveness of finite element modeling and the finite element calculation method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3