Depth-Quality Purification Feature Processing for Red Green Blue-Depth Salient Object Detection

Author:

Feng Shijie1ORCID,Zhao Li1ORCID,Hu Jie1ORCID,Zhou Xiaolong2ORCID,Chan Sixian34ORCID

Affiliation:

1. Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China

2. The College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China

3. The College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

4. Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, The College of Computer and Information, China Three Gorges University, Yichang 443002, China

Abstract

With the advances in deep learning technology, Red Green Blue-Depth (RGB-D) Salient Object Detection (SOD) based on convolutional neural networks (CNNs) is gaining more and more attention. However, the accuracy of current models is challenging. It has been found that the quality of the depth features profoundly affects the accuracy. Several current RGB-D SOD techniques do not consider the quality of the depth features and directly fuse the original depth features and Red Green Blue (RGB) features for training, resulting in enhanced precision of the model. To address this issue, we propose a depth-quality purification feature processing network for RGB-D SOD, named DQPFPNet. First, we design a depth-quality purification feature processing (DQPFP) module to filter the depth features in a multi-scale manner and fuse them with RGB features in a multi-scale manner. This module can control and enhance the depth features explicitly in the process of cross-modal fusion, avoiding injecting noise or misleading depth features. Second, to prevent overfitting and avoid neuron inactivation, we utilize the RReLU activation function in the training process. In addition, we introduce the pixel position adaptive importance (PPAI) loss, which integrates local structure information to assign different weights to each pixel, thus better guiding the network’s learning process and producing clearer details. Finally, a dual-stage decoder is designed to utilize contextual information to improve the modeling ability of the model and enhance the efficiency of the network. Extensive experiments on six RGB-D datasets demonstrate that DQPFPNet outperforms recent efficient models and delivers cutting-edge accuracy.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Construction of Hubei Provincial Key Laboratory for Intelligent Visual Monitoring of Hydropower Projects

Hangzhou AI major scientific and technological innovation project

Project of Science and Technology Plans of Wenzhou City

Quzhou Science and Technology Projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3