CMOS Wireless Hybrid Transceiver Powered by Integrated Photodiodes for Ultra-Low-Power IoT Applications

Author:

Nikseresht Sasan1ORCID,Fernández Daniel2,Cosp-Vilella Jordi1ORCID,Selin-Lorenzo Irina1,Madrenas Jordi1ORCID

Affiliation:

1. Department of Electronic Engineering, Universitat Politècnica de Catalunya Barcelona Tech, 08034 Barcelona, Spain

2. Wiyo Technologies, Caléndula 95, Building “O”, 28109 Alcobendas, Spain

Abstract

In this article, a communication platform for a self-powered integrated light energy harvester based on a wireless hybrid transceiver is proposed. It consists of an optical receiver and a reconfigurable radio frequency (RF) transmitter. The hybrid optical/RF communication approach improves load balancing, energy efficiency, security, and interference reduction. A light beam for communication in the downlink, coupled with a 1 MHz radio frequency signal for the uplink, offers a small area and ultra-low-power consumption design for Smart Dust/IoT applications. The optical receiver employs a new charge-pump-based technique for the automatic acquisition of a reference voltage, enabling compensation for comparator offset errors and variations in DC-level illumination. On the uplink side, the reconfigurable transmitter supports OOK/FSK/BPSK data modulation. Electronic components and the energy harvester, including integrated photodiodes, have been designed, fabricated, and experimentally tested in a 0.18 µm triple-well CMOS technology in a 1.5 × 1.3 mm2 chip area. Experiments show the correct system behavior for general and pseudo-random stream input data, with a minimum pulse width of 50 µs and a data transmission rate of 20 kb/s for the optical receiver and 1 MHz carrier frequency. The maximum measured power of the signal received from the transmitter is approximately −18.65 dBm when using a light-harvested power supply.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3