Deep Convolutional Neural Network for Indoor Regional Crowd Flow Prediction

Author:

Teng Qiaoshuang1ORCID,Sun Shangyu12,Song Weidong1,Bei Jinzhong13,Wang Chongchang1

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

3. Chinese Academy of Surveying and Mapping, Beijing 100036, China

Abstract

Crowd flow prediction plays a vital role in modern city management and public safety prewarning. However, the existing approaches related to this topic mostly focus on single sites or road segments, and indoor regional crowd flow prediction has yet to receive sufficient academic attention. Therefore, this paper proposes a novel prediction model, named the spatial–temporal attention-based crowd flow prediction network (STA-CFPNet), to forecast the indoor regional crowd flow volume. The model has four branches of temporal closeness, periodicity, tendency and external factors. Each branch of this model takes a convolutional neural network (CNN) as its principal component, which computes spatial correlations from near to distant areas by stacking multiple CNN layers. By incorporating the output of the four branches into the model’s fusion layer, it is possible to utilize ensemble learning to mine the temporal dependence implicit within the data. In order to improve both the convergence speed and prediction performance of the model, a building block based on spatial–temporal attention mechanisms was designed. Furthermore, a fully convolutional structure was applied to the external factors branch to provide globally shared external factors contexts for the research area. The empirical study demonstrates that STA-CFPNet outperforms other well-known crowd flow prediction methods in processing the experimental datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3