A New Method of Detecting and Interrupting High Impedance Faults by Specifying the Z-Source Breaker in DC Power Networks

Author:

Bhatta Sagar,Fu Ruiyun,Zhang Yucheng

Abstract

High impedance faults (HIFs) that cause a relatively smaller current magnitude compared to the traditional low impedance faults are not easily detectable but can cause an extreme threat to electric apparatus and system operation. This paper introduces a new method of detecting and interrupting HIFs in DC power networks by specifying Z-source circuit breakers (ZCBs). The ZCB is a protective device for high power DC branches, with the capabilities of protecting bidirectional power flow and automatic/controllable turnoff function. In this new method, the operational mode of ZCB (i.e., either the detection mode or interruption mode) can be specified. Beyond previous research, the theoretical analysis has been performed on this method and the mathematical relationship between the maximum HIF resistance and required Z-source capacitance has been derived and verified. It has been found that the ZCB can respond to a HIF accordingly when its capacitances are properly adjusted in the ZCB circuit. With the adjustment of these Z-source capacitances, the ZCB can be specified to detect and report a HIF status to power system operators, or cut off the HIF branch and protect the rest of the DC system directly. The new method can detect/interrupt a HIF that is as small as 2 times of its nominal rated current and the effectiveness and general usage of the derived equation have been verified by both low power experiments in lab and high power simulation tests.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3