An Optimized Fuzzy Logic Control Model Based on a Strategy for the Learning of Membership Functions in an Indoor Environment

Author:

Fayaz Muhammad,Ullah IsrarORCID,Kim DoHyeun

Abstract

The Mamdani fuzzy inference method is one of the most important fuzzy logic control (FLC) techniques and has several applications in different fields. Despite its applications, the Mamdani fuzzy inference method has some core issues which still require solutions. The most critical issue is the selection of accurate shape and boundaries of membership functions (MFs) in the universe of discourse. In this work, we introduced a methodology called learning to control (LtC) to resolve the problem. The proposed methodology consisted of two main modules, namely, a control algorithm (CA) module and a learning algorithm (LA) module. In the CA module, the Mamdani FLC method has been used, whereas, in the LA module, we have used the artificial neural network (ANN) algorithm. Inputs into the ANN were the error difference between environmental temperature and the required temperature. The output of the ANN was the MF set to the FLC. Inputs into the fuzzy logic controller (FLC) were the error difference between environmental temperature and required temperature (D), and the output was the required power for the fan actuator. The purpose of the ANN was to tune the MFs of the FLC to improve its efficiency. The proposed learning-to-control method along with the conventional fuzzy logic controller method was applied to the data to evaluate the model’s performance. The results indicate that the proposed model’s performance is far better than that of conventional fuzzy logic techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3