RPL Routing Protocol Performance in Smart Grid Applications Based Wireless Sensors: Experimental and Simulated Analysis

Author:

Abdel Hakeem Shimaa,Hady Anar,Kim HyungWon

Abstract

The Advanced Metering Infrastructure (AMI) is one of the Smart Grid (SG) applications that used to upgrade the current power system by proposing a two-way communication system to connect the smart meter devices at homes with the electric control company. The design and deployment of an efficient routing protocol solution for AMI systems are considered to be a critical challenge due to the constrained resources of the smart meter nodes. IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was recently standardized by the IETF and originally designed to satisfy the routing requirements of lossy and low power networks like wireless sensors (WSN). We have two kinds of AMI applications, on one hand AMI based WSN and on the other hand AMI based PLC communication. In this paper, we proposed a real and simulated implementation of RPL behavior with proper modifications to support the AMI based WSN routing requirements. We evaluate RPL performance using 140 nodes from the wireless sensor testbed (IoT-LAB) and 1000 nodes using Cooja simulator measure RPL performance within medium and high-density networks. We adopted two routing metrics for path selection: First one is HOP Count (HC) and the second is Expected Transmission Unit (ETX) to evaluate RPL performance in terms of packet delivery ratio; network latency; control traffic overhead; and power consumption. Our results illustrate that routes with ETX calculations in low and medium network densities outperform routes using HC and the performance decreases as the network becomes dense. However, Cooja implementation results provides an average reasonable performance for AMI with high-density networks; still many RPL nodes suffering from high packet loss rates, network congestion and many retransmissions due to the selection of optimal paths with highly unreliable links.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3