Generalized Cascaded Symmetric and Level Doubling Multilevel Converter Topology with Reduced THD for Photovoltaic Applications

Author:

D Karthikeyan,K VijayakumarORCID,M Jagabar

Abstract

In this paper, two different converter topologies for a basic new switched capacitor diode converter with a reduced number of power electronics components, suitable for grid connected photovoltaic applications were proposed. The two different structures of switched diode multilevel converter proposed were: (i) cascaded switched diode and (ii) cascaded switched diode with doubling circuit. The switched-diode multilevel converter was compared with other recent converters. In addition, a new dc offset nearest level modulation technique was proposed. This proposed dc offset technique offers low voltage total harmonic distortion (THD) and high RMS output voltage. The proposed modulation technique was compared with conventional nearest level modulation (NLM) and modified NLM control techniques. The performance of the proposed dc offset modulation technique was implemented using a FPGA Spartan 3E controller and tested with a novel switched capacitor-diode multilevel converter. However, to prove the authenticity of the switched-diode multilevel converter and modulation technique, a laboratory-based prototype model for 7-level and 13-level converters was developed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Inspection on Multilevel Inverters Based on Sustainable Applications;Power Converters, Drives and Controls for Sustainable Operations;2023-06-23

2. Design of advanced Aalborg inverter for extracting maximum power from renewable energy sources tied with autonomous grid system;IET Power Electronics;2023-02-15

3. A review of hybrid wind turbine-photovoltaic systems for standalone applications based on multilevel inverters;INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings;2023

4. A Novel Switching Control Technique for a Packed E-Cell (PEC) Inverter Using Signal Builder Block;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

5. Analysis of Multi-Input Multilevel Boost Inverter Circuit with Optimal Firing Angles Using dSPACE;Journal of Electrical Engineering & Technology;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3