Abstract
With the proliferation of the Internet-of-Things (IoT), the users’ trajectory data containing privacy information in the IoT systems are easily exposed to the adversaries in continuous location-based services (LBSs) and trajectory publication. Existing trajectory protection schemes generate dummy trajectories without considering the user mobility pattern accurately. This would cause that the adversaries can easily exclude the dummy trajectories according to the obtained geographic feature information. In this paper, the continuous location entropy and the trajectory entropy are defined based on the gravity mobility model to measure the level of trajectory protection. Then, two trajectory protection schemes are proposed based on the defined entropy metrics to protect the trajectory data in continuous LBSs and trajectory publication, respectively. Experimental results demonstrate that the proposed schemes have a higher level than the enhanced dummy-location selection (enhance-DLS) scheme and the random scheme.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献