Toward Network Worm Victims Identification Based on Cascading Motif Discovery

Author:

Hu HangyuORCID,Wang Mingda,Ouyang Mingyu,Hu Guangmin

Abstract

Network worms spread widely over the global network within a short time, which are increasingly becoming one of the most potential threats to network security. However, the performance of traditional packet-oriented signature-based methods is questionable in the face of unknown worms, while anomaly-based approaches often exhibit high false positive rates. It is a common scenario that the life cycle of network worms consists of the same four stages, in which the target discovery phase and the transferring phase have specific interactive patterns. To this end, we propose Network Flow Connectivity Graph (NFCG) for identifying network worm victims. We model the flow-level interactions as graph and then identify sets of frequently occurring motifs related to network worms through Cascading Motif Discovery algorithm. In particular, a cascading motif is jointly extracted from graph target discovery phase and transferring phase. If a cascading motif exists in a connected behavior graph of one host, the host would be identified as a suspicious worm victim; the excess amount of suspicious network worm victims is used to reveal the outbreak of network worms. The simulated experiments show that our proposed method is effective and efficient in network worm victims’ identification and helpful for improving network security.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Teaching Management and Monitoring Abnormal Network Behaviors Under COVID-19;International Journal of Distributed Systems and Technologies;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3