Abstract
Emerging applications such as industrial automation, in-vehicle, professional audio-video, and wide area electrical utility networks require strict bounds on the end-to-end network delay. Solutions so far to such a requirement are either impractical or ineffective. Flow based schedulers suggested in a traditional integrated services (IntServ) framework are O(N) or O(log N), where N is the number of flows in the scheduler, which can grow to tens of thousands in a core router. Due to such complexity, class-based schedulers are adopted in real deployments. The class-based systems, however, cannot provide bounded delays in networks with cycle, since the maximum burst grows infinitely along the cycled path. Attaching a regulator in front of a scheduler to limit the maximum burst is considered as a viable solution. International standards, such as IEEE 802.1 time sensitive network (TSN) and IETF deterministic network (DetNet) are adopting this approach as a standard. The regulator in TSN and DetNet, however, requires flow state information, therefore contradicts to the simple class-based schedulers. This paper suggests non-work conserving fair schedulers, called ‘regulating schedulers’ (RSC), which function as a regulator and a scheduler at the same time. A deficit round-robin (DRR) based RSC, called nw-DRR, is devised and proved to be both a fair scheduler and a regulator. Despite the lower complexity, the input port-based nw-DRR is shown to perform better than the current TSN approach, and to bind the end-to-end delay within a few milliseconds in realistic network scenarios.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference24 articles.
1. IEEE 802.1 Time-Sensitive Networking Task Group Home Pagehttp://www.ieee802.org/1/pages/tsn.html
2. IETF DetNet Working Group Home Pagehttps://datatracker.ietf.org/wg/detnet/documents/
3. Integrated Services in the Internet Architecture: An Overviewhttps://tools.ietf.org/html/rfc1633
4. A generalized processor sharing approach to flow control in integrated services networks: the multiple node case
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献