Abstract
In the present study, the layout structure of an n-MOSFET, which is vulnerable to radiation, was designed in a different way to enhance its tolerance to radiation. Radiation damage assessment was conducted using modeling and simulation (M&S) techniques before actual semiconductor process fabrication and radiation tests to verify its tolerance properties. Based on the M&S techniques, the role of each layer was determined to improve the radiation tolerance of semiconductors, and the layout design of an n-MOSFET with enhanced radiation tolerance was optimized. The optimized radiation-tolerant n-MOSFET design was implemented in the 0.18-um CMOS bulk process, and radiation exposure tests were conducted on the device. A cumulative radiation dose up to 2 Mrad(Si) was applied to verify its radiation-tolerant performance. Developing new devices using M&S techniques for radiation damage assessment allows reliable estimates of their electrical and radiation-tolerant properties to be obtained in advance of the actual manufacturing process, thereby minimizing development costs and time.
Funder
Ministry of Science and ICT, South Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献