Compact Implementation of ARIA on 16-Bit MSP430 and 32-Bit ARM Cortex-M3 Microcontrollers

Author:

Seo HwajeongORCID,Kim Hyunjun,Jang Kyoungbae,Kwon Hyeokdong,Sim Minjoo,Song Gyeongju,Uhm Siwoo

Abstract

In this paper, we propose the first ARIA block cipher on both MSP430 and Advanced RISC Machines (ARM) microcontrollers. To achieve the optimized ARIA implementation on target embedded processors, core operations of ARIA, such as substitute and diffusion layers, are carefully re-designed for both MSP430 (Texas Instruments, Dallas, TX, USA) and ARM Cortex-M3 microcontrollers (STMicroelectronics, Geneva, Switzerland). In particular, two bytes of input data in ARIA block cipher are concatenated to re-construct the 16-bit wise word. The 16-bit word-wise operation is executed at once with the 16-bit instruction to improve the performance for the 16-bit MSP430 microcontroller. This approach also optimizes the number of required registers, memory accesses, and operations to half numbers rather than 8-bit word wise implementations. For the ARM Cortex-M3 microcontroller, the 8×32 look-up table based ARIA block cipher implementation is further optimized with the novel memory access. The memory access is finely scheduled to fully utilize the 3-stage pipeline architecture of ARM Cortex-M3 microcontrollers. Furthermore, the counter (CTR) mode of operation is more optimized through pre-computation techniques than the electronic code book (ECB) mode of operation. Finally, proposed ARIA implementations on both low-end target microcontrollers (MSP430 and ARM Cortex-M3) achieved (209 and 96 for 128-bit security level, respectively), (241 and 111 for 192-bit security level, respectively), and (274 and 126 for 256-bit security level, respectively). Compared with previous works, the running timing on low-end target microcontrollers (MSP430 and ARM Cortex-M3) is improved by (92.20% and 10.09% for 128-bit security level, respectively), (92.26% and 10.87% for 192-bit security level, respectively), and (92.28% and 10.62% for 256-bit security level, respectively). The proposed ARIA–CTR implementation improved the performance by 6.6% and 4.0% compared to the proposed ARIA–ECB implementations for MSP430 and ARM Cortex-M3 microcontrollers, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. ACE: ARIA-CTR Encryption for Low-End Embedded Processors

2. High speed implementation of authenticated encryption for the MSP430X microcontroller;Gouvêa,2012

3. Implementation of the SCREAM Tweakable Block Cipher in MSP430 Assembly Language;Diehl;IACR Cryptol. ePrint Arch.,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3