A Study to Resist Conduced Interference from GIS Bus-Charging Currents Switching for Electronic Current Transformer

Author:

Bai Shijun,Yue FandingORCID,Zeng Lincui,Li Yi,Wang Chuanchuan,Wang Xiaohua,Rong Mingzhe

Abstract

In this paper, we study the conducted interference to an electronic current transformer introduced in the process of bus-charging currents which are caused by switching a gas insulated switchgear (GIS) disconnector. To cope with these issues, the EMTP-ATP and Matlab/Simulink software are used to carry out equivalent modeling simulations and experimental research, respectively. More specifically, the very fast transient current generated by disconnector switching (DS) is used as the input source of the equivalent simulation model of the Rogowski coil, and the characteristics of conducted interference waveforms of the Rogowski coil, the active integrator and filter outputs under single and multiple breakdowns are analyzed step by step. Moreover, several anti-interference methods are proposed to improve the resistance to the high-voltage and high-frequency conducted interference for the Rogowski coil, such as reducing the Rogowski cut-off frequency, increasing the transient voltage suppressor (TVS), active filter, and Cy capacitor. Besides, the study also reveals that the residual charge of the integral capacitor will discharge with a time constant τ = 1 s after arc quenching with the first-order discharge circuit, which is composed of the feedback resistance and the integral capacitor C. Lastly, the experimental results demonstrate the correctness of the modeling method proposed in this paper and the effectiveness of anti-interference measures.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

1. Disconnector switching in GIS: three-phase testing and phenomena

2. Grounding system analysis in transients programs applying electromagnetic field approach

3. Study on the impact of VFTO electromagnetic interference on electronic transformers in 500 kV GIS substation;Limin;Trans. China Electrotech. Soc.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3