Abstract
This paper proposes a modified dynamic equivalent circuit model for a linear induction motor considering both longitudinal end effect and transverse edge effect. The dynamic end effect (speed-dependent end effect) is based on conventional Duncan’s approach. The transverse edge effect is investigated by using three correction factors applied to the secondary resistance and magnetizing inductance. Moreover, the iron saturation effect, the skin effect, and the air-gap leakage effect are incorporated into the proposed model by using the field-analysis method. A new topology of the steady-state and space-vector model of linear induction, regarding all mentioned phenomena, is presented. The parameters of this model are calculated using both field analysis and the finite-element method. The steady-state performance of the model is first validated using the finite-element method. Additionally, the dynamic performance of the proposed model is studied. The results prove that the proposed equivalent circuit model can precisely predict the dynamic and steady-state performances of the linear induction.
Funder
Estonian Research Council
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献