Abstract
This paper presents a 10-bit 0.909-MHz 8-channel dual-mode successive approximation (SAR) analogue-to-digital converter (ADC) for brushless direct current (BLDC) motor drive, using a Taiwan Semiconductor Manufacturing (TSMC) 0.25 μm 1P3M Complementary Metal Oxide Semiconductor (CMOS) process. The sample-and-hold (S/H) circuit operates with two sampling modes. One is individually sampling eight channels in sequence with an S/H circuit and the other is sampling four channels simultaneously with four S/H circuits. All sampled data will be digitized with high-speed SAR ADC in time division multiplexing (TDM). A dynamic latch-type comparator is utilized to latch the output at an upper or lower level. The advantage of the designed comparator is that it performs with positive feedback to quickly complete the latch function. The double-tail latch-type architecture is utilized to mitigate the significant kickback effect by separating the pre-amplifier stage from the latch. By integrating an input NMOSFET with an input PMOSFET, the designed latch-type comparator can perform with full-swing input voltage. Measurements show that the signal-to-noise ratio (SNR), signal-to-noise-and-distortion ratio (SNDR), effective number of bits (ENOB), power consumption, and chip area are 50.56 dB, 57.03 dB, 8.11 bits, 833 μW, and 1.35 × 0.98 mm2, respectively. The main advantages of the proposed multichannel dual-mode SAR ADC are its low power consumption of 833 μW and high measured resolution of 8.11 bits.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献