Author:
Yin Liang,Yang Ruonan,Yao Yuliang
Abstract
Millimeter wave, especially the high frequency millimeter wave near 100 GHz, is one of the key spectrum resources for the sixth generation (6G) mobile communication, which can be used for precise positioning, imaging and large capacity data transmission. Therefore, high frequency millimeter wave channel sounding is the first step to better understand 6G signal propagation. Because indoor wireless deployment is critical to 6G and different scenes classification can make future radio network optimization easy, we built a 6G indoor millimeter wave channel sounding system using just commercial instruments based on time-domain correlation method. Taking transmission and reception of a typical 93 GHz millimeter wave signal in the W-band as an example, four indoor millimeter wave communication scenes were modeled. Furthermore, we proposed a data-driven supervised machine learning method to extract fingerprint features from different scenes. Then we trained the scene classification model based on these features. Baseband data from receiver was transformed to channel Power Delay Profile (PDP), and then six fingerprint features were extracted for each scene. The decision tree, Support Vector Machine (SVM) and the optimal bagging channel scene classification algorithms were used to train machine learning model, with test accuracies of 94.3%, 86.4% and 96.5% respectively. The results show that the channel fingerprint classification model trained by machine learning method is effective. This method can be used in 6G channel sounding and scene classification to THz in the future.
Funder
Youth Program of National Natural Science Foundation of China and National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献