An Empirical Study of Korean Sentence Representation with Various Tokenizations

Author:

Cho DanbiORCID,Lee HyunyoungORCID,Kang SeungshikORCID

Abstract

It is important how the token unit is defined in a sentence in natural language process tasks, such as text classification, machine translation, and generation. Many studies recently utilized the subword tokenization in language models such as BERT, KoBERT, and ALBERT. Although these language models achieved state-of-the-art results in various NLP tasks, it is not clear whether the subword tokenization is the best token unit for Korean sentence embedding. Thus, we carried out sentence embedding based on word, morpheme, subword, and submorpheme, respectively, on Korean sentiment analysis. We explored the two-sentence representation methods for sentence embedding: considering the order of tokens in a sentence and not considering the order. While inputting a sentence, which is decomposed by token unit, to the two-sentence representation methods, we construct the sentence embedding with various tokenizations to find the most effective token unit for Korean sentence embedding. In our work, we confirmed: the robustness of the subword unit for out-of-vocabulary (OOV) problems compared to other token units, the disadvantage of replacing whitespace with a particular symbol in the sentiment analysis task, and that the optimal vocabulary size is 16K in subword and submorpheme tokenization. We empirically noticed that the subword, which was tokenized by a vocabulary size of 16K without replacement of whitespace, was the most effective for sentence embedding on the Korean sentiment analysis task.

Funder

The Ministry of the Republic of Korea and the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3