Enhancing Heterogeneous Network Performance: Advanced Content Popularity Prediction and Efficient Caching

Author:

Sun Zhiyao1,Chen Guifen1

Affiliation:

1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China

Abstract

With the popularity of smart devices and the growth of high-bandwidth applications, the wireless industry is facing an increased surge in data traffic. This challenge highlights the limitations of traditional edge-caching solutions, especially in terms of content-caching effectiveness and network-communication latency. To address this problem, we investigated efficient caching strategies in heterogeneous network environments. The caching decision process becomes more complex due to the heterogeneity of the network environment, as well as due to the diversity of user behaviors and content requests. To address the problem of increased system latency due to the dynamically changing nature of content popularity and limited cache capacity, we propose a novel content placement strategy, the long-short-term-memory–content-population-prediction model, to capture the correlation of request patterns between different contents and the periodicity in the time domain, in order to improve the accuracy of the prediction of content popularity. Then, to address the heterogeneity of heterogeneous network environments, we propose an efficient content delivery strategy: the multi-intelligent critical collaborative caching policy. This strategy models the edge-caching problem in heterogeneous scenarios as a Markov decision process using multi-base-station-environment information. In order to fully utilize the multi-intelligence information, we have improved the actor–critic approach by integrating the attention mechanism into a neural network. Whereas the actor network is responsible for making decisions based on local information, the critic network evaluates and enhances the actor’s performance. We conducted extensive simulations, and the results showed that the Long Short Term Memory content population prediction model was more advantageous, in terms of content-popularity-prediction accuracy, with a 28.61% improvement in prediction error, compared to several other existing methods. The proposed multi-intelligence actor–critic collaborative caching policy algorithm improved the cache-hit-rate metric by up to 32.3% and reduced the system latency by 1.6%, demonstrating the feasibility and effectiveness of the algorithm.

Funder

Jilin Provincial Department of Education

Industrial Technology Research and Development of Jilin Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3