A Method for Unseen Object Six Degrees of Freedom Pose Estimation Based on Segment Anything Model and Hybrid Distance Optimization

Author:

Xin Li123,Lin Hu12,Liu Xinjun12ORCID,Wang Shiyu14

Affiliation:

1. Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Shenyang Equipment Manufacturing Engineering School, Shenyang 110168, China

4. Shenyang CASNC Technology Co., Ltd., Shenyang 110168, China

Abstract

Six degrees of freedom pose estimation technology constitutes the cornerstone for precise robotic control and similar tasks. Addressing the limitations of current 6-DoF pose estimation methods in handling object occlusions and unknown objects, we have developed a novel two-stage 6-DoF pose estimation method that integrates RGB-D data with CAD models. Initially, targeting high-quality zero-shot object instance segmentation tasks, we innovated the CAE-SAM model based on the SAM framework. In addressing the SAM model’s boundary blur, mask voids, and over-segmentation issues, this paper introduces innovative strategies such as local spatial-feature-enhancement modules, global context markers, and a bounding box generator. Subsequently, we proposed a registration method optimized through a hybrid distance metric to diminish the dependency of point cloud registration algorithms on sensitive hyperparameters. Experimental results on the HQSeg-44K dataset substantiate the notable improvements in instance segmentation accuracy and robustness rendered by the CAE-SAM model. Moreover, the efficacy of this two-stage method is further corroborated using a 6-DoF pose dataset of workpieces constructed with CloudCompare and RealSense. For unseen targets, the ADD metric achieved 2.973 mm, and the ADD-S metric reached 1.472 mm. This paper significantly enhances pose estimation performance and streamlines the algorithm’s deployment and maintenance procedures.

Funder

the project of Supporting Program for Young and Middle-aged Scientific and Technological Innovation Talents in Shenyang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3