A Lightweight Context-Aware Feature Transformer Network for Human Pose Estimation

Author:

Ma Yanli1,Shi Qingxuan1,Zhang Fan1

Affiliation:

1. Hebei Machine Vision Engineering Research Center, Hebei University, Baoding 071002, China

Abstract

We propose a Context-aware Feature Transformer Network (CaFTNet), a novel network for human pose estimation. To address the issue of limited modeling of global dependencies in convolutional neural networks, we design the Transformerneck to strengthen the expressive power of features. Transformerneck directly substitutes 3×3 convolution in the bottleneck of HRNet with a Contextual Transformer (CoT) block while reducing the complexity of the network. Specifically, the CoT first produces keys with static contextual information through 3×3 convolution. Then, relying on query and contextualization keys, dynamic contexts are generated through two concatenated 1×1 convolutions. Static and dynamic contexts are eventually fused as an output. Additionally, for multi-scale networks, in order to further refine the features of the fusion output, we propose an Attention Feature Aggregation Module (AFAM). Technically, given an intermediate input, the AFAM successively deduces attention maps along the channel and spatial dimensions. Then, an adaptive refinement module (ARM) is exploited to activate the obtained attention maps. Finally, the input undergoes adaptive feature refinement through multiplication with the activated attention maps. Through the above procedures, our lightweight network provides powerful clues for the detection of keypoints. Experiments are performed on the COCO and MPII datasets. The model achieves a 76.2 AP on the COCO val2017 dataset. Compared to other methods with a CNN as the backbone, CaFTNet has a 72.9% reduced number of parameters. On the MPII dataset, our method uses only 60.7% of the number of parameters, acquiring similar results to other methods with a CNN as the backbone.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3