Design of a Generic Dynamically Reconfigurable Convolutional Neural Network Accelerator with Optimal Balance

Author:

Tong Haoran1,Han Ke1ORCID,Han Si2ORCID,Luo Yingqi1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Information Management for Laws, China University for Political Science and Law, Beijing 100091, China

Abstract

In many scenarios, edge devices perform computations for applications such as target detection and tracking, multimodal sensor fusion, low-light image enhancement, and image segmentation. There is an increasing trend of deploying and running multiple different network models on one hardware platform, but there is a lack of generic acceleration architectures that support standard convolution (CONV), depthwise separable CONV, and deconvolution (DeCONV) layers in such complex scenarios. In response, this paper proposes a more versatile dynamically reconfigurable CNN accelerator with a highly unified computing scheme. The proposed design, which is compatible with standard CNNs, lightweight CNNs, and CNNs with DeCONV layers, further improves the resource utilization and reduces the gap of efficiency when deploying different models. Thus, the hardware balance during the alternating execution of multiple models is enhanced. Compared to a state-of-the-art CNN accelerator, Xilinx DPU B4096, our optimized architecture achieves resource utilization improvements of 1.08× for VGG16 and 1.77× for MobileNetV1 in inference tasks on the Xilinx ZCU102 platform. The resource utilization and efficiency degradation between these two models are reduced to 59.6% and 63.7%, respectively. Furthermore, the proposed architecture can properly run DeCONV layers and demonstrates good performance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3