Low-Cost Training of Image-to-Image Diffusion Models with Incremental Learning and Task/Domain Adaptation

Author:

Antona Hector1,Otero Beatriz1ORCID,Tous Ruben1ORCID

Affiliation:

1. Department of Computer Architecture, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain

Abstract

Diffusion models specialized in image-to-image translation tasks, like inpainting and colorization, have outperformed the state of the art, yet their computational requirements are exceptionally demanding. This study analyzes different strategies to train image-to-image diffusion models in a low-resource setting. The studied strategies include incremental learning and task/domain transfer learning. First, a base model for human face inpainting is trained from scratch with an incremental learning strategy. The resulting model achieves an FID score almost equivalent to that of its batch learning equivalent while significantly reducing the training time. Second, the base model is fine-tuned to perform a different task, image colorization, and, in a different domain, landscape images. The resulting colorization models showcase exceptional performances with a minimal number of training epochs. We examine the impact of different configurations and provide insights into the ability of image-to-image diffusion models for transfer learning across tasks and domains.

Funder

Ministerio de Ciencia e Innovación

Government of Catalonia

European Union

Publisher

MDPI AG

Reference24 articles.

1. Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., and Norouzi, M. (2022, January 7–11). Palette: Image-to-image diffusion models. Proceedings of the ACM SIGGRAPH 2022 Conference, Vancouver, BC, Canada.

2. Yang, L., Zhang, Z., and Hong, S. (2022). Diffusion models: A comprehensive survey of methods and applications. arXiv.

3. Zhang, Q., and Chen, Y. (2022). Fast Sampling of Diffusion Models with Exponential Integrator. arXiv.

4. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., and Poole, B. (2020, January 26–30). Score-Based Generative Modeling through Stochastic Differential Equations. Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia.

5. Denoising diffusion probabilistic models;Ho;Adv. Neural Inf. Process. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3