Abstract
In this article, we focus on the acceleration of a chemical reaction simulation that relies on a system of stiff ordinary differential equation (ODEs) targeting heterogeneous computing systems with CPUs and field-programmable gate arrays (FPGAs). Specifically, we target an essential kernel of the coupled chemistry aerosol-tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CCATT-BRAMS). We focus on a linear solve step using the QR factorization based on the modified Gram-Schmidt method as the basis of the ODE solver in this application. We target Intel hardware accelerator research program (HARP) architecture with the OpenCL programming environment for these early experiments. Our design exploration reveals a hardware design that is up to 4 times faster than the original iterative Jacobi method used in this solver. Still, even with hardware support, the overall performance of our QR-based hardware is lower than its original software version.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献