Assessment of Head Impacts and Muscle Activity in Soccer Using a T3 Inertial Sensor and a Portable Electromyography (EMG) System: A Preliminary Study

Author:

Worsey MatthewORCID,Jones Bethany,Cervantes AndresORCID,Chauvet Sabrina,Thiel DavidORCID,Espinosa HugoORCID

Abstract

Heading the ball is an important skill in soccer. Head impacts are of concern because of the potential adverse health effects. Many elite players now wear GPS (that include inertial monitoring units) on the upper spine for location tracking and workload measurement. By measuring the maximum acceleration of the head and the upper spine, we calculated the acceleration ratio as an attenuation index for participants (n = 8) of different skill levels during a front heading activity. This would allow for in-field estimates of head impacts to be made and concussive events detected. For novice participants, the ratio was as high as 8.3 (mean value 5.0 ± 1.8), whereas, for experienced players, the mean ratio was 3.2 ± 1.5. Elite players stiffen the neck muscles to increase the ball velocity and so the torso acts as a support structure. Electromyography (EMG) signals that were recorded from the neck and shoulder before and after a training intervention showed a major increase in mean average muscle activity (146%, p = 3.39 × 10−6). This was accompanied by a major decrease in acceleration ratio (34.41%, p = 0.008). The average head-ball impact velocity was 1.95 ± 0.53 m/s determined while using optical motion capture. For this low velocity, the impact force was 102 ± 19 N, 13% of the published concussive force. The voluntary action of neck muscles decreases isolated head movements during heading. Coaches and trainers may use this evidence in their development of junior players.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3